Descent Algebras , Hyperplane Arrangements , and Shuffling Cards

نویسنده

  • Jason Fulman
چکیده

Abstract Two notions of riffle shuffling on finite Coxeter groups are given: one using Solomon’s descent algebra and another using random walk on chambers of hyperplane arrangements. These definitions coincide for types A,B,H3, and rank two groups. Both notions satisfy a convolution property and have the same simple eigenvalues. The hyperplane definition is especially natural and satisfies a positivity property when W is crystallographic and the relevant parameter is a good prime. The hyperplane viewpoint suggests deep connections with Lie theory and leads to a notion of riffle shuffling for arbitrary real hyperplane arrangements and oriented matroids. 1991 AMS Subject Classification: 20F55, 20G40

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Descent algebras, hyperplane arrangements, and shuffling cards. To appear

This note establishes a connection between Solomon’s descent algebras and the theory of hyperplane arrangements. It is shown that card-shuffling measures on Coxeter groups, originally defined in terms of descent algebras, have an elegant combinatorial description in terms of random walk on the chambers of hyperplane arrangements. As a corollary, a positivity conjecture of Fulman is proved.

متن کامل

v 4 [ m at h . C O ] 1 5 Ju l 1 99 9 Descent Algebras , Hyperplane Arrangements , and Shuffling Cards

Two notions of riffle shuffling on finite Coxeter groups are given: one using Solomon’s descent algebra and another using random walk on chambers of hyperplane arrangements. These coincide for types A,B,C, H3, and rank two groups. Both notions have the same, simple eigenvalues. The hyperplane definition is especially natural and satisfies a positivity property when W is crystallographic and the...

متن کامل

Descent Algebras, Hyperplane Arrangements, and Shuuing Cards

This note establishes a connection between Solomon's descent algebras and the theory of hyperplane arrangements. It is shown that card-shu ing measures on Coxeter groups, originally de ned in terms of descent algebras, have an elegant combinatorial description in terms of randomwalk on the chambers of hyperplane arrangements. As a corollary, a positivity conjecture of Fulman is proved. 2

متن کامل

Mathematical Developments from the Analysis of Riffle Shuffling

1. Introduction The most common method of mixing cards is the ordinary riffle shuffle, in which a deck of n cards (often n = 52) is cut into two parts and the parts are riffled together. A sharp mathematical analysis for a natural model of riffle shuffling was carried out by Bayer and Diaconis (1992). This gives closed form expressions for the chance of any permutation and allows analytic appro...

متن کامل

Errata to " Hyperplane Arrangements and Descent Algebras "

Hyperplane arrangements and descent algebras Franco V Saliola saliola-DesAlgLectureNotes.pdf version of 10 January 2006 Errata and addenda by Darij Grinberg I will refer to the results appearing in the article " A Hyperplane arrangements and descent algebras " by the numbers under which they appear in this article. 6. Errata • Various places (for example, §2.1): You use the notations ⊆ and ⊂ sy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000